Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(4): e17266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533756

RESUMEN

Climatic drivers alone do not adequately explain the regional variation in budburst timing in deciduous forests across Europe. Stand-level factors, such as tree species richness, might affect budburst timing by creating different microclimates under the same site macroclimate. We assessed different phases of the spring phenology (start, midpoint, end, and overall duration of the budburst period) of four important European tree species (Betula pendula, Fagus sylvatica, Quercus robur and Tilia cordata) in monocultures and four-species mixture stands of a common garden tree biodiversity experiment in Belgium (FORBIO) in 2021 and 2022. Microclimatic differences between the stands in terms of bud chilling, temperature forcing, and soil temperature were considerable, with four-species mixtures being generally colder than monocultures in spring, but not in winter. In the colder spring of 2021, at the stand level, the end of the budburst period was advanced, and its overall duration shortened, in the four-species mixtures. At species level, this response was significant for F. sylvatica. In the warmer spring of 2022, advances in spring phenology in four-species stands were observed again in F. sylvatica and, less markedly, in B. pendula but without a general response at the stand level. Q. robur showed specific patterns with delayed budburst start in 2021 in the four-species mixtures and very short budburst duration for all stands in 2022. Phenological differences between monocultures and four-species mixtures were linked to microclimatic differences in light availability rather than in temperature as even comparatively colder microclimates showed an advanced phenology. Compared to weather conditions, tree species richness had a lower impact on budburst timing, but this impact can be of importance for key species like F. sylvatica and colder springs. These results indicate that forest biodiversity can affect budburst phenology, with wider implications, especially for forest- and land surface models.


Asunto(s)
Frío , Árboles , Árboles/fisiología , Temperatura , Estaciones del Año , Bosques , Hojas de la Planta/fisiología
2.
Sci Total Environ ; 918: 170623, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38320706

RESUMEN

Agricultural practices enhancing soil organic carbon (SOC) show potential to buffer negative effects of climate change on forage grass performance. We tested this by subjecting five forage grass varieties differing in fodder quality and drought/flooding resistance to increased persistence in summer precipitation regimes (PR) across sandy and sandy-loam soils from either permanent (high SOC) or temporary grasslands (low SOC) in adjacent parcels. Over the course of two consecutive summers, monoculture mesocosms were subjected to rainy/dry weather alternation either every 3 days or every 30 days, whilst keeping total precipitation equal. Increased PR persistence induced species-specific drought damage and productivity declines. Soils from permanent grasslands with elevated SOC buffered plant quality, but buffering effects of SOC on drought damage, nutrient availability and yield differed between texture classes. In the more persistent PR, Festuca arundinacea FERMINA was the most productive species but had the lowest quality under both ample water supply and mild soil drought, whilst under the most intense soil droughts, Festulolium FESTILO maintained the highest yields. The hybrid Lolium × boucheanum kunth MELCOMBI had intermediate productivity and both Lolium perenne varieties showed the lowest yields under soil drought, but the highest forage quality (especially the tetraploid variety MELFORCE). Performance varied with plant maturity stage and across seasons/years and was driven by altered water and nutrient availability and related nitrogen nutrition among species during drought and upon rewetting. Moreover, whilst permanent grassland soils showed the most consistent positive effects on plant performance, their available water capacity also declined under increased PR persistence. We conclude that permanent grassland soils with historically elevated SOC likely buffer negative effects of increasing summer weather persistence on forage grass performance, but may also be more sensitive to degradation under climate change.


Asunto(s)
Carbono , Lolium , Poaceae , Pradera , Suelo , Sequías , Agua
3.
Physiol Plant ; 175(6): e14083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148201

RESUMEN

Climate models suggest that the persistence of summer precipitation regimes (PRs) is on the rise, characterized by both longer dry and longer wet durations. These PR changes may alter plant biochemical composition and thereby their economic and ecological characteristics. However, impacts of PR persistence have primarily been studied at the community level, largely ignoring the biochemistry of individual species. Here, we analyzed biochemical components of four grassland species with varying sensitivity to PR persistence (Holcus lanatus, Phleum pratense, Lychnis flos-cuculi, Plantago lanceolata) along a range of increasingly persistent PRs (longer consecutive dry and wet periods) in a mesocosm experiment. The more persistent PRs decreased nonstructural sugars, whereas they increased lignin in all species, possibly reducing plant quality. The most sensitive species Lychnis seemed less capable of altering its biochemical composition in response to altered PRs, which may partly explain its higher sensitivity. The more tolerant species may have a more robust and dynamic biochemical network, which buffers the effects of changes in individual biochemical components on biomass. We conclude that the biochemical composition changes are important determinants for plant performance under increasingly persistent precipitation regimes.


Asunto(s)
Pradera , Plantas , Biomasa , Estaciones del Año , Cambio Climático
4.
Ecology ; 104(12): e4177, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37782819

RESUMEN

It has typically been assumed that habitat destruction, characterized by habitat loss and fragmentation, has consistently negative effects on biodiversity. While numerous empirical studies have shown the detrimental effects of habitat loss, debate continues as to whether habitat fragmentation has universally negative effects. To explore the effects of habitat fragmentation, we developed a simple model for site-occupancy dynamics in fragmented landscapes. With the model, we demonstrate that a competition-colonization trade-off can result in nonlinear oscillatory responses in biodiversity to both habitat loss and fragmentation. However, the overall pattern of habitat loss reducing species richness is still established, in line with empirical observations. Interestingly, the existence of localized oscillations in biodiversity can explain the mixed responses of species richness to habitat fragmentation per se observed in nature, thereby reconciling the debate on the fragmentation-diversity relationship. Therefore, this study offers a parsimonious mechanistic explanation for empirically observed biodiversity patterns in response to habitat destruction.


Asunto(s)
Biodiversidad , Ecosistema
5.
Sci Total Environ ; 903: 166570, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633385

RESUMEN

A soil history of exposure to extreme weather may impact future plant growth and microbial community assembly. Currently, little is known about whether and how previous precipitation regime (PR)-induced changes in soil microbial communities influence plant and soil microbial community responses to a subsequent PR. We exposed grassland mesocosms to either an ambient PR (1 day wet-dry alternation) or a persistent PR (30 days consecutive wet-dry alternation) for one year. This conditioned soil was then inoculated as a 10 % fraction into 90 % sterilized "native" soil, after which new plant communities were established and subjected to either the ambient or persistent PR for 60 days. We assessed whether past persistent weather-induced changes in soil microbial community composition affect soil microbial and plant community responses to subsequent weather persistence. The historical regimes caused enduring effects on fungal communities and only temporary effects on bacterial communities, but did not trigger soil microbial legacy effects on plant productivity when exposed to either current PR. This study provides experimental evidence for soil legacy of climate persistence on grassland ecosystems in response to subsequent climate persistence, helping to understand and predict the influences of future climate change on soil biota.

6.
Mar Life Sci Technol ; 5(2): 169-177, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37275541

RESUMEN

Exploring how food web complexity emerges and evolves in island ecosystems remains a major challenge in ecology. Food webs assembled from multiple islands are commonly recognized as highly complex trophic networks that are dynamic in both space and time. In the context of global climate change, it remains unclear whether food web complexity will decrease in a monotonic fashion when undergoing habitat destruction (e.g., the inundation of islands due to sea-level rise). Here, we develop a simple yet comprehensive patch-dynamic framework for complex food web metacommunities subject to the competition-colonization tradeoff between basal species. We found that oscillations in food web topological complexity (characterized by species diversity, mean food chain length and the degree of omnivory) emerge along the habitat destruction gradient. This outcome is robust to changing parameters or relaxing the assumption of a strict competitive hierarchy. Having oscillations in food web complexity indicates that small habitat changes could have disproportionate negative effects on species diversity, thus the success of conservation actions should be evaluated not only on changes in biodiversity, but also on system robustness to habitat alteration. Overall, this study provides a parsimonious mechanistic explanation for the emergence of food web complexity in island ecosystems, further enriching our understanding of metacommunity assembly. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00167-0.

7.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128754

RESUMEN

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Asunto(s)
Microclima , Árboles , Temperatura , Bosques , Ecosistema
8.
Sci Total Environ ; 838(Pt 3): 156368, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35654184

RESUMEN

Climate change will likely increase weather persistence in the mid-latitudes, resulting in precipitation regimes (PR) with longer dry and wet periods compared to historic averages. This could affect terrestrial ecosystems substantially through the increased occurrence of repeated, prolonged drought and water logging conditions. Climate history is an important determinant of ecosystem responses to consecutive environmental extremes, through direct damage, community restructuring as well as morphological and physiological acclimation in species or individuals. However, it is unclear how community restructuring and individual metabolic acclimation effects interact to determine ecosystem responses to subsequent climate extremes. Here, we investigated, if and how, differences in exposure to extreme or historically normal PR induced long-lasting (i.e. legacy) effects at the level of community (e.g., species composition), plant (e.g., biomass), and molecular composition (e.g., sugars, lipids, stress markers). Experimental grassland communities were exposed to long (extreme) or short (historically normal) dry/wet cycles in year 1 (Y1), followed by exposure to an identical PR or the opposite PR in year 2 (Y2). Results indicate that exposure to extreme PR in Y1, reduced diversity but induced apparent acclimation effects in all climate scenarios, stimulating biomass (higher productivity and structural sugar content) in Y2. In contrast, plants pre-exposed to normal PR, showed more activated stress responses (higher proline and antioxidants) under extreme PR in Y2. Overall, Y1 acclimation effects were strongest in the dominant grasses, indicating comparatively high phenotypical plasticity. However, Y2 drought intensity also correlated with grass productivity and structural sugar findings, suggesting that responses to short-term soil water deficits contributed to the observed patterns. Interactions between different legacy effects are discussed. We conclude that more extreme PR will likely alter diversity in the short-to midterm and select for acclimated grassland communities with increased productivity and attenuated molecular stress responses under future climate regimes.


Asunto(s)
Ecosistema , Pradera , Aclimatación , Cambio Climático , Humanos , Poaceae , Azúcares , Agua
9.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35222963

RESUMEN

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

10.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605132

RESUMEN

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Asunto(s)
Bosques , Microclima , Cambio Climático , Temperatura , Árboles
11.
Ecol Evol ; 11(15): 10613-10626, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367601

RESUMEN

Urban environments often host a greater abundance and diversity of alien plant species than rural areas. This is frequently linked to higher disturbance and propagule pressure, but could also be related to the additional establishment of species from warmer native ranges in cities, facilitated by the latter's higher air temperatures and drier soils. A hitherto unresolved question is how stressful the urban environments become during climate extremes such as heatwaves and droughts. Do such episodes still favor alien plant species, or set them back? We used in situ measured phenotypic leaf and development trait responses of the six most widespread alien Asteraceae species from various native climates along Belgian urban-to-rural gradients, measured during two unusually warm and dry summers. Urbanization was characterized by three factors: the percentage of artificially sealed surfaces (urbanity, measured at three spatial scales from in situ to satellite-based), the vegetation cover and the sky view factor (SVF, fraction of the hemisphere not blocked by buildings or vegetation). Across species, either from colder or warmer native climates, we found a predominant protective effect of shielded environments that block solar radiation (low SVF) along the entire urban-to-rural gradient. Such environments induced lower leaf anthocyanins and flavonols indices, indicating heat stress mitigation. Shielded environments also increased specific leaf area (SLA), a typical shade response. We found that vegetated areas had a secondary importance, increasing the chlorophyll content and decreasing the flavonols index, but these effects were not consistent across species. Finally, urbanity at the organism spatial scale decreased plant height, while broader-scale urbanity had no significant influence. Our results suggest that sealed surfaces constrain alien Asteraceae during unusually warm and dry summers, while shielded environments protect them, possibly canceling out the lack of light. These findings shed new light on alien plant species success along urban-to-rural gradients in a changing climate.

12.
Glob Chang Biol ; 27(11): 2441-2457, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33675118

RESUMEN

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.


Asunto(s)
Sequías , Pradera , Biodiversidad , Biomasa , Ecosistema , Europa (Continente)
13.
New Phytol ; 230(3): 1156-1168, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32984980

RESUMEN

Plant associated mutualists can mediate invasion success by affecting the ecological niche of nonnative plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied. To better understand this interaction, we investigated how disturbance and its interaction with mycorrhizas could impact range dynamics of nonnative plant species in the mountains of Norway. Therefore, we studied the root colonisation and community composition of arbuscular mycorrhizal (AM) fungi in disturbed vs undisturbed plots along mountain roads. We found that roadside disturbance strongly increases fungal diversity and richness while also promoting AM fungal root colonisation in an otherwise ecto-mycorrhiza and ericoid-mycorrhiza dominated environment. Surprisingly, AM fungi associating with nonnative plant species were present across the whole elevation gradient, even above the highest elevational limit of nonnative plants, indicating that mycorrhizal fungi are not currently limiting the upward movement of nonnative plants. We conclude that roadside disturbance has a positive effect on AM fungal colonisation and richness, possibly supporting the spread of nonnative plants, but that there is no absolute limitation of belowground mutualists, even at high elevation.


Asunto(s)
Micorrizas , Ecosistema , Hongos , Noruega , Plantas , Suelo , Microbiología del Suelo , Simbiosis
14.
Ecol Lett ; 24(1): 50-59, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33029856

RESUMEN

Understanding the mechanisms of biodiversity maintenance is a fundamental issue in ecology. The possibility that species disperse within the landscape along differing paths presents a relatively unexplored mechanism by which diversity could emerge. By embedding a classical metapopulation model within a network framework, we explore how access to different dispersal networks can promote species coexistence. While it is clear that species with the same demography cannot coexist stably on shared dispersal networks, we find that coexistence is possible on unshared networks, as species can surprisingly form self-organised clusters of occupied patches with the most connected patches at the core. Furthermore, a unimodal biodiversity response to an increase in species colonisation rates or average patch connectivity emerges in unshared networks. Increasing network size also increases species richness monotonically, producing characteristic species-area curves. This suggests that, in contrast to previous predictions, many more species can co-occur than the number of limiting resources.


Asunto(s)
Ecosistema , Modelos Biológicos , Biodiversidad , Ecología , Dinámica Poblacional
15.
Glob Chang Biol ; 27(8): 1614-1626, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355970

RESUMEN

Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid-latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad environmental tolerance. As a consequence, biodiversity may decline. Here we explore the relationship between the persistence of summer precipitation regimes and plant diversity by subjecting experimental grassland mesocosms to a gradient of dry-wet alternation frequencies whilst keeping the total precipitation constant. The gradient varied the duration of consecutive wet and dry periods, from 1 up to 60 days with or without precipitation, over a total of 120 days. An alternation of longer dry and wet spells led to a severe loss of species richness (up to -75% relative to the current rainfall pattern in W-Europe) and functional diversity (enhanced dominance of grasses relative to nitrogen (N)-fixers and non-N-fixing forbs). Loss of N-fixers and non-N-fixing forbs in severe treatments was linked to lower baseline competitive success and higher physiological sensitivity to changes in soil moisture compared to grasses. The extent of diversity losses also strongly depended on the timing of the dry and wet periods. Regimes in which long droughts (≥20 days) coincided with above-average temperatures showed significantly more physiological plant stress over the experimental period, greater plant mortality, and impoverished communities by the end of the season. Across all regimes, the duration of the longest period below permanent wilting point was an accurate predictor of mortality across the communities, indicating that increasingly persistent precipitation regimes may reduce opportunities for drought stress alleviation. We conclude that without recruitment, which was precluded in this experiment, summer precipitation regimes with longer dry and wet spells will likely diminish plant diversity, at least in the short term.


Asunto(s)
Biodiversidad , Sequías , Europa (Continente) , Pradera , Plantas , Suelo
16.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33274502

RESUMEN

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Asunto(s)
Ecosistema , Ciencia Ambiental , Biodiversidad , Ecología , Suelo
17.
Science ; 368(6492): 711-712, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409462

Asunto(s)
Bosques , Microclima , Plantas
18.
Glob Chang Biol ; 26(6): 3539-3551, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32011046

RESUMEN

Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity-stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity-stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non-native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi-natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.


Asunto(s)
Sequías , Ecosistema , Biodiversidad , Cambio Climático , Europa (Continente) , Pradera
20.
Ecol Evol ; 8(8): 4209-4223, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721292

RESUMEN

To answer the long-standing question if we can predict plant invader success based on characteristics of the environment (invasibility) or the invasive species (invasiveness), or the combination of both, there is a need for detailed observational studies in which habitat properties, non-native plant traits, and the resulting invader success are locally measured. In this study, we assess the interaction of gradients in the environmental and trait space on non-native species fitness, expressed as seed production, for a set of 10 invasive and noninvasive non-native species along a wide range of invaded sites in Flanders. In our multidimensional approach, most of the single environmental gradients (temperature, light availability, native plant species diversity, and soil fertility) and sets of non-native plant traits (plant size, photosynthesis, and foliar chemical attributes) related positively with invader seed production. Yet correlation with seed production was much stronger when several environmental gradients were assessed in interaction, and even more so when we combined plant traits and habitat properties. The latter increased explanatory power of the models on average by 25% for invasive and by 7% for noninvasive species. Additionally, we report a 70-fold higher seed production in invasive than in noninvasive species and fundamentally different correlations of seed production with plant traits and habitat properties in noninvasive versus invasive species. We conclude that locally measured traits and properties deserve much more attention than they currently get in invasion literature and thus encourage further studies combining this level of detail with the generality of a multiregion and multispecies approach across different stages of invasion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...